Investigación
- Detalles
- Categoría: Investigación
TDP-43 es una proteína que actúa como editor y repartidor de mensajes, encargándose de modificar la información contenida en el ARN y del transporte del mismo, desde el núcleo al citoplasma. Si durante este reparto TDP-43 encuentra condiciones adversas, actúa como un paraguas (en realidad un hidrogel o amiloide funcional) para proteger los mensajes que transporta. Desafortunadamente, en ocasiones los paraguas se rompen y TDP-43 puede enredarse formando una maraña (agregados amiloides tóxicos), comprometiendo la edición y la correcta distribución del mensaje, probablemente causando la muerte celular. De hecho, los agregados de TDP-43 están vinculados a la esclerosis lateral amiotrófica (ELA), una enfermedad neurodegenerativa que causa la muerte de 4.000 españoles al año. La elucidación de la estructura, dinámica y estabilidad de la primera cuarta parte (o dominio N-terminal) de TDP-43 proporciona las herramientas para una mejor comprensión de la función y disfunción de esta proteína.
Mompeán M, Romano V, Pantoja-Uceda D, Stuani C, Baralle FE, Buratti E and Laurents DV "The TDP-43 N-Terminal Domain Structure at High Resolution." FEBS J. Jan 12th, 2016
doi: 10.1111/febs.13651
- Detalles
- Categoría: Investigación
Se ha diseñado un nuevo método para relacionar propiedades dinámicas y la función de proteínas inmovilizadas en microesferas de agarosa. La movilidad de las proteínas se cuantifica en cualquier localización de la microesfera, a diferentes profundidades (0-100 µm), con resolución espacial de 500-600 nm, a partir de imágenes de anisotropía de fluorescencia de secciones ópticas de las esferas. Se propone una escala general de movilidad de proteínas, que es independiente de la configuración instrumental y de la sonda fluorescente. La movilidad de la macromolécula es muy sensible al tipo de química de inmovilización, así como a la microestructura porosa del hidrogel, condicionada por la química de inmovilización. Los resultados obtenidos pueden ayudar a conseguir catalizadores heterogéneos más estables con interés para el biodiesel y las industrias de alimentos.
Orrego AH, García C, Mancheño JM, Guisán JM, Lillo MP, López-Gallego F
"Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins" J Phys Chem B (2016) 120, 485-491.
DOI: 10.1021/acs.jpcb.5b12385
- Detalles
- Categoría: Investigación
El ozono de la troposfera, especialmente el presente en las zonas tropicales hasta unos 17 km de altura, es un importante gas de efecto invernadero, cuya influencia sobre el calentamiento global en los últimos 300 años es similar a la del metano. Recientemente se ha completado un estudio internacional, con la participación de investigadores del Departamento de Química Atmosférica y Clima del IQFR, que muestra que la concentración de ozono en la troposfera media (8-10 km) sobre el Pacífico Oeste se ha triplicado en relación con la existente en los trópicos. Aunque el aumento se atribuyó anteriormente al transporte de ozono desde la estratosfera, las medidas de satélite y avión, y el análisis de modelos de cambio climático del presente estudio, indican que este aumento de ozono se origina en la combustión de masas forestales de África y el sudeste asiático. Por tanto, la quema de grandes cantidades de biomasa en estas regiones tiene un impacto sobre el clima mucho mayor que el estimado anteriormente.
D. C. Anderson, J. M. Nicely, R. J. Salawitch, T. P. Canty, R. R. Dickerson, T. F. Hanisco, G. M. Wolfe, E. C. Apel, E. Atlas, T. Bannan, S. Bauguitte, N. J. Blake, J. F. Bresch, T. L. Campos, L. J. Carpenter, M. D. Cohen, M. Evans, R. P. Fernandez, B. H. Kahn, D. E. Kinnison, S. R. Hall, N. R. Harris, R. S. Hornbrook, J.-F. Lamarque, M. Le Breton, J. D. Lee, C. Percival, L. Pfister, R. R. Pierce, D. D. Riemer, A. Saiz-Lopez, B. J. Stunder, A. M. Thompson, K. Ullmann, A. Vaughan and A. J. Weinheimer. A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications (2015).
- Detalles
- Categoría: Investigación
En la situación actual de cambio climático, la salinidad y la sequía constituyen una amenaza mundial a la productividad de nuestras cosechas. Una parte fundamental de la respuesta de las plantas a las situaciones de estrés ambiental se produce en la membrana celular, dónde se concentra la maquinaria molecular encargada de la turgencia celular y el equilibrio necesario de iones en el interior de la célula. La familia de proteínas CAR (C2-domain ABA-Related) contribuye a estos procesos, facilitando la relocalización de proteínas reguladoras de esta maquinaria molecular, desde el medio intracelular a la membrana plasmática. Nuestro análisis proporciona una explicación de cómo las proteínas CAR alcanzan la membrana y cómo se organizan para disparar los mecanismos de defensa de las plantas frente al estrés.
Maira Diaz, Maria Jose Sanchez-Barrena, Juana Maria Gonzalez-Rubio, Lesia Rodriguez, Daniel Fernandez, Regina Antoni, Cristina Yunta, Borja Belda-Palazon, Miguel Gonzalez-Guzman, Marta Peirats-Llobet, Margarita Menendez, Jasminka Boskovic, Jose A. Marquez, Pedro L. Rodriguez and Armando Albert. "Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling", PNAS (2015).
DOI: 10.1073/pnas.1512779113.
- Detalles
- Categoría: Investigación
Streptococcus pneumoniae (neumococo), incluido dentro de los denominados supergérmenes, es una causa primordial de la sepsis bacteriana y el agente etiológico más frecuente en neumonía adquirida en la comunidad, así como de la meningitis bacteriana no epidémica. LytB, perteneciente a la familia de proteínas de superficie, portadora de dominios de unión a colina, es responsable de la separación de las células hijas tras la división y participa en la colonización e invasión de la nasofaringe, la formación de biofilms y la evasión de la respuesta inmune del hospedador. Por ello es considerada como una diana para el desarrollo de vacunas y nuevos antimicrobianos. Este trabajo, liderado por investigadores del IQFR y el CIB, en colaboración con científicos de las Universidades de Newcastle (Newcastle upon Tyne, UK) y Notre Dame (Indiana, USA), ha permitido demostrar que LytB es una glucosaminidasa, establecer el origen de su especificidad de sustrato y el posible mecanismo catalítico, proponer un modelo de unión al peptidoglicano de la bacteria y los determinantes de su localización polar en neumococo. Los resultados obtenidos contribuyen a un mejor conocimiento del complejo papel fisiológico que juega LytB en la bacteria y en la interacción con su hospedador.
Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. 2015. “Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence”. Sci Rep. 5:16198. doi: 10.1038/srep16198.
Streptococcus pneumoniae (neumococo), incluido dentro de los denominados supergérmenes, es una causa primordial de la sepsis bacteriana y el agente etiológico más frecuente en neumonía adquirida en la comunidad, así como de la meningitis bacteriana no epidémica. LytB, perteneciente a la familia de proteínas de superficie, portadora de dominios de unión a colina, es responsable de la separación de las células hijas tras la división y participa en la colonización e invasión de la nasofaringe, la formación de biofilms y la evasión de la respuesta inmune del hospedador. Por ello es considerada como una diana para el desarrollo de vacunas y nuevos antimicrobianos. Este trabajo, liderado por investigadores del IQFR y el CIB, en colaboración con científicos de las Universidades de Newcastle (Newcastle upon Tyne, UK) y Notre Dame (Indiana, USA), ha permitido demostrar que LytB es una glucosaminidasa, establecer el origen de su especificidad de sustrato y el posible mecanismo catalítico, proponer un modelo de unión al peptidoglicano de la bacteria y los determinantes de su localización polar en neumococo. Los resultados obtenidos contribuyen a un mejor conocimiento del complejo papel fisiológico que juega LytB en la bacteria y en la interacción con su hospedador.
Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. 2015. “Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence”. Sci Rep. 5:16198.