News
Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

In its 85-year story, the mission of our institute has been to carry out excellence research in fundamental and applied physical chemistry, contributing to the scientific training of several generations of researchers at the highest level. Our vision is to be an international reference in multidisciplinary research focused on the resolution of the present challenges of our society in the fields of health, biotechnology, new materials, and environment.

Today

No events

Upcoming events

No events
August 2018
M T W T F S S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

News

figura-nota-PNASDrought and salinity are the major threats to crop productivity at a worldwide scale. A fundamental portion of the plant response to these environmental stresses occurs at the cell membrane, where the molecular machinery to preserve cell turgor and the appropriate balance of intracellular ions is found. The C2-domain ABA-related (CAR) family of proteins contributes to these processes by delivering the regulatory proteins controlling this machinery from other cell compartments to the cell membrane. Our analysis provides an explanation on how CAR proteins specifically reach a particular membrane place to develop their function and trigger the plant defense mechanism against stress.

Maira Diaz, Maria Jose Sanchez-Barrena, Juana Maria Gonzalez-Rubio, Lesia Rodriguez, Daniel Fernandez, Regina Antoni, Cristina Yunta, Borja Belda-Palazon, Miguel Gonzalez-Guzman, Marta Peirats-Llobet, Margarita Menendez, Jasminka Boskovic, Jose A. Marquez, Pedro L. Rodriguez and Armando Albert. "Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling", PNAS (2015).
DOI: 10.1073/pnas.1512779113.

 

foto-becaria

Angélica Partida Hanon, PhD student from the department of Biological Physical Chemistry has been awarded with one of the two Universia Foundation scholarships intended for the completion of the PhD thesis.

Universia Foundation (www.fundacionuniversia.net) is a private entity of Santander group which promotes the access to higher education and qualified employment for people with disabilities in Spain. 2015’s call included two scholarships intended to carry doctoral studies, which are allocated based on the merits of the applicant and the host research group. One of them have been granted to Angelica Partida Hanon, graduated in Biological Sciences from the Complutense University of Madrid, who joined the group of Structure, Dynamics and Protein Interactions by NMR in September of 2014, for her doctoral studies on the applications of NMR to determine the structural basis of the antigen-antibody recognition in two model systems: immunogenic peptides derived from the gp41 glycoprotein of HIV-1 virus and the allergenic protein “Ani s 1” of Anisakis simplex

 

imagen-lytb

Streptococcus pneumoniae (the pneumococus), a superbug bacteria, is a leading cause of bacterial sepsis and the most frequent ethiologic-agent in the community adquired pneumoniae and non-epidemic bacterial meningitis. LytB, a member of the family of pneumococcal choline-binding protein, is responsible for the physical separation of daugther cells after division and participates in nasopharinx colonization and invasion, biofilm formation and evasion from the host immunity. Because of this, LytB is considered a putative vaccine/drug target. Here, IQFR and CIB investigators, in collaboration with scientists from the Universities of Newcastle (Newcastle upon Tyne, UK) and Notre Dame (Indiana, USA), have shown that LytB is a glucosaminidase and the basis for its high substrate specificity are unveiled. The catalytic mechanism and model of binding to the bacterial peptidoglycan together with determinants of its polar localization on pneumococcal cells is also advanced. Reported data provide a better understanding of the complex physiological role played by LytB in the bacterium and the host-pathogen interaction.

 

Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. 2015. “Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence”. Sci Rep. 5:16198. doi: 10.1038/srep16198.

 

Within the "Julio Palacios Project", Professor Francisco González de Posada will give a colloquium on "The problem of time: Newton's and Einstein's concepts", next Monday, November 23rd, at 12:00h at the Institute of Physical Chemistry "Rocasolano" (CSIC). The colloquium is directed to public in general, students, professors, academicians and researchers.

USTS

The first edition of the Ultrafast Science and Technology Spain meeting (USTS2015) will take place in the Main Campus of the Spanish National Research Council (CSIC) in Madrid, in November 24th and 25th, 2015. Oral Sessions will be celebrated in the Instituto de Quimica Fisica Rocasolano. The Meeting has been promoted by the Grupo Especializado de Láseres Ultrarrápidos (GELUR) of the RSEF.

The scope of this Meeting is broad and will cover topics including ultrafast laser development, extreme light, materials processing, femtosecond laser spectroscopy and dynamics, nonlinear optical phenomena, ultrafast processes in biology, femtosecond microscopy or attosecond physics.

With nearly 70 contributions and over 90 registered attendees, we expect to enjoy a successful and exciting meeting. Details can be found in http://www.ultrafast.es/USTS2015.

 

IPERIONCH-PARTHENOSThrough IQFR and CENIM researchers, CSIC participates in two H2020 European projects, IPERION CH and PARTHENOS.
IPERION CH (Integrated Platform for the European Research Infrastructure ON Cultural Heritage), with 23 partners, offers trans‐national access to world‐class diagnostic tools and methods in one integrated platform, including large scale installations and mobile laboratories with a wide range of portable scientific instruments, and to unique and important archives of scientific data for advancing knowledge and innovation in Cultural Heritage. Further information at http://www.iperionch.eu/


PARTHENOS (Pooling Activities, Resources and Tools for Heritage E-research Networking, Optimization and Synergies), with 15 partners, is aimed to strengthening the cohesion of research in the broad sector of Linguistic Studies, Humanities, Cultural Heritage, History, Archaeology and related fields through a thematic cluster of European Research Infrastructures, integrating initiatives, e-infrastructures and other world-class infrastructures. Strong links between the activity of PARTHENOS and IPERION CH are envisaged in the parallel running of these two projects. Further information at http://www.parthenos-project.eu/

 

foto-NASA-en

Bromine is an effective ozone destruction catalyst in the stratosphere, the region of the atmosphere that contains the ozone layer. Most bromine reaching the stratosphere comes from anthropogenic sources, which are controlled by the Montreal Protocol (an international treaty designed to protect the ozone layer of the Earth). In addition, an uncertain amount of natural organic bromine compounds, emitted from the oceans as a result of the marine biological activity, can reach the stratosphere where it contributes to the destruction of the ozone layer. In this work, these ocean-emitted organic bromine compounds have been measured for the first time both over the East and West Pacific Ocean in profiles from the ocean surface up to the gateway of the stratosphere, at 18 km. The measurements were made aboard the NASA´s non-tripulated Global Hawk aircraft as part of the NASA´s Airborne Tropical Tropopause Experiment (ATTREX) campaigns. This study also uses a climate model to quantify the impact of the injected natural bromine on the destruction of the ozone layer. 

Maria A. Navarro, Elliot L. Atlas, Alfonso Saiz-Lopez, Xavier Rodriguez-Lloveras, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, Michal Filus, Neil R. P. Harris, Elena Meneguz, Matthew J. Ashfold, Alistair J. Manning, Carlos A. Cuevas, Sue M. Schauffler, and Valeria Donets. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer. PNAS.
DOI: 10.1073/pnas.1511463112

 

Information for scientists

Information for staff

Projects financed by