News
Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

In its 85-year story, the mission of our institute has been to carry out excellence research in fundamental and applied physical chemistry, contributing to the scientific training of several generations of researchers at the highest level. Our vision is to be an international reference in multidisciplinary research focused on the resolution of the present challenges of our society in the fields of health, biotechnology, new materials, and environment.

Intranet

Today

No events

Upcoming events

No events
October 2018
M T W T F S S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

News

foto-NASA-en

Bromine is an effective ozone destruction catalyst in the stratosphere, the region of the atmosphere that contains the ozone layer. Most bromine reaching the stratosphere comes from anthropogenic sources, which are controlled by the Montreal Protocol (an international treaty designed to protect the ozone layer of the Earth). In addition, an uncertain amount of natural organic bromine compounds, emitted from the oceans as a result of the marine biological activity, can reach the stratosphere where it contributes to the destruction of the ozone layer. In this work, these ocean-emitted organic bromine compounds have been measured for the first time both over the East and West Pacific Ocean in profiles from the ocean surface up to the gateway of the stratosphere, at 18 km. The measurements were made aboard the NASA´s non-tripulated Global Hawk aircraft as part of the NASA´s Airborne Tropical Tropopause Experiment (ATTREX) campaigns. This study also uses a climate model to quantify the impact of the injected natural bromine on the destruction of the ozone layer. 

Maria A. Navarro, Elliot L. Atlas, Alfonso Saiz-Lopez, Xavier Rodriguez-Lloveras, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, Michal Filus, Neil R. P. Harris, Elena Meneguz, Matthew J. Ashfold, Alistair J. Manning, Carlos A. Cuevas, Sue M. Schauffler, and Valeria Donets. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer. PNAS.
DOI: 10.1073/pnas.1511463112

 

nature-2015-def

 

 

 

 

 

 

 

 

 

 

 

Light is crucial for many essential biological processes such as photosynthesis, vision, circadian rhythms, etc., but can also cause photooxidative cellular damage. Living organisms sense and respond to light using photoreceptors, proteins associated with a light-sensing chromophoric cofactor such as retinal in the photoreceptors of the eye. In 2011, the research teams of Dr. S. Padmanabhan (NMR group, IQFR) and Prof. Montserrat Elías-Arnanz (Universidad of Murcia/Associated Unit to IQFR) discovered a novel photoreceptor family that uses vitamin B12 as the light-sensing molecule and revealed its mode of action in light-dependent gene regulation. These two teams, in collaboration with that of Prof. Catherine L. Drennan (Massachusetts Institute of Technology, USA), now report the crystal structures of the B12-dependent photoreceptor in all three relevant states: in the dark (both free and bound to DNA), and after light exposure; that is, three high-resolution snapshots that reveal the light-dependent conformational changes behind its mechanism of action. These findings expand the biological role assigned to vitamin B12, and enable a framework for the development of a new class of optogenetic tools for controlled gene expression.

Marco Jost, Jésus Fernández-Zapata, María Carmen Polanco, Juan Manuel Ortiz-Guerrero, Percival Yang-Ting Chen, Gyunghoon Kang, S. Padmanabhan, Montserrat Elías-Arnanz, and Catherine L. Drennan. “Structural basis for gene regulation by a B12-dependent photoreceptor” Nature 526, 536–541 (22 October 2015) DOI: 10.1038/nature14950 (Published online September 28, 2015).

 

cover-art

Vitamin B12 is an essential enzyme cofactor in humans and other animals. Lack of B12 causes pernicious anemia, neural dysfunction and other disorders. A new molecular function for this vitamin was discovered a few years ago (PNAS, Vol. 108, p 7565-7570, 2011) in a collaboration between Dr. S. Padmanabhan of the NMR group (IQFR) and the Molecular Genetics group of Prof. Montserrat Elías-Arnanz (Universidad of Murcia and Associated Unit to IQFR). It was shown that B12 displays a new role as a light-sensing molecule and that it is involved in light-dependent gene regulation. Now, these researchers in collaboration with others at the University of Manchester (UK), have published a detailed photochemical mechanism for this new class of photoreceptors. The work provides a mechanistic foundation for the emerging field of B12 photobiology and a basis for the development of this class of photoreceptors as optogenetic tools for controlled gene expression in cells and organisms.

Roger J. Kutta, Roger J. Kutta, Samantha J. O. Hardman, Linus O. Johannissen, Bruno Bellina, Hanan L. Messiha, Juan Manuel Ortiz-Guerrero, Montserrat Elías-Arnanz, S. Padmanabhan, Perdita Barran, Nigel S. Scrutton, Alex R. Jones. The photochemical mechanism of a B12-dependent photoreceptor protein. Nature Communications, 6,
Article number 7907, August 12, 2015. doi: 10.1038/ncomms8907.

 

RMN-como-herramientaWe all know someone who has undergone a Nuclear Magnetic Resonance (NMR) scan. But only very few know that NMR is a powerful tool for the determination of the three-dimensional structure of molecules. This has been explained by Dr. Marta Bruix, from the Protein Structure, Dynamics and Interactions by NMR Group, on April 20th in the RTVE program “On Giant's Shoulders” (http://bit.ly/1LbRKEk).

 

 

book Boron Fifth Element-def

A collaboration between the Institute of Physical-Chemistry “Rocasolano” (CSIC) and the Institute of Molecular Sciences from the University of Valencia has led to a chapter in the book “Boron: The fifth element” (Springer Verlag), within the series “Challenges and Advances in Computational Chemistry and Physics”. Since the disclosure of borane compounds - polyhedral BxHy structures - as rocket fuel in the 1950’s, the research in this field, particularly on the synthesis of boranes and their derivatives, has grown exponentially. This multi-author book reviews the recent developments in boron chemistry, with a particular emphasis on the contribution of computational chemistry.
Josep M. Oliva, Antonio Francés-Monerris, and Daniel Roca-Sanjuán, “Quantum Chemistry of Excited States in Polyhedral Boranes”. Capítulo 4 en “Boron: The Fifth Element”, volumen 20 de la serie “Challenges and Advances in Computational Chemistry and Physics”, Editorial Springer (2016) ISBN 978-3-319-22282-0.

ParaBioF-small

Only 2% of the genome codes for proteins. What does the rest do? What is its structure? One of the most intriguing and unknown regions in the eukaryotic genome is the centromere. IQFR and CMBSO researchers have recently shown that centromeric sequences of organisms as distant in the evolutionary tree as fruit flies and humans are able to fold in vitro forming the same type of secondary structure, known as the “i-motif”. The presence of these structures in such distant organisms suggests that they may be involved in the structural organization of the centromere. If this were the case, the centromeric DNA could have been selected during evolution not for its primary sequence, but for its capability to form this non-canonical structure, the “i-motif”. 
 
This work is the result of a collaboration with our colleague and friend Alfredo Villasante, to whose memory it is dedicated.
 
M. Garavís, N. Escaja, V. Gabelica,  A. Villasante and C. González. Centromeric alpha-satellite DNA adopts dimeric i-motif structures capped by AT Hoogsteen base pairs. Chemistry-A Eur. J., 21, 9816-9824, 2015. doi: 10.1002/chem.201500448 (artículo del mes SBE, junio 2015)
 
M. Garavís, M. Méndez-Lago, V. Gabelica, S. L. Whitehead  G. González, and A. Villasante. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs. Sci. Rep., 5, 13307, 2015. doi: 10.1038/srep13307
 
 

nanoestructuras-ferrita

Ultrathin islands of up to 100 μm2 with atomically flat surfaces and free from antiphase boundaries are developed. The extremely low defect concentration leads to a robust magnetic order, even for thicknesses below 1 nm, and exceptionally large magnetic domains. This approach allows the evaluation of the influence of specific extrinsic effects on domain wall pinning. The work has been performed by researchers of the Instituto de Quimica-Física "Rocasolano" and other CSIC institutes (ICV, ICMM) in collaboration with Alba synchrotron scientists.

 

L. Martín-García, A. Quesada, C. Munuera, J.F. Fernández, M. García-Hernández, M. Foerster, L. Aballe, J. de la Figuera. Atomically flat ultrathin cobalt ferrite islands.Advanced Materials. DOI: 10.1002/adma.201502799

 

 

Information for scientists

Information for staff

Projects financed by