Investigación
- Detalles
- Categoría: Investigación
El descubrimiento de amiloides estables, compuestos únicamente por residuos polares, sorprendió a los eruditos que creían que la estabilidad conformacional de proteínas se debía mayoritariamente al denominado efecto hidrófobo. Estos amiloides, ricos en residuos de asparagina (Asn) y glutamina (Gln), forman extensas redes de enlaces de hidrógeno que cuando se alinean se fortalecen por efectos de cooperación debidos a la hiperpolarización de las cargas eléctricas. Aplicando la teoría del funcional de la densidad y el análisis de orbitales naturales enlazantes hemos pronosticado que estas redes de enlaces de hidrógeno, ricas en Asn y Gln, experimentan una cooperatividad especial que las estabiliza considerablemente con respecto a las redes que se forman entre las cadenas principales del esqueleto peptídico. Estos resultados, corroborados experimentalmente a través de medidas de conductividad eléctrica, unión a sondas específicas de amiloide y mediante resonancia magnética nuclear, pueden ser de gran utilidad para diseñar soluciones que induzcan la inhibición selectiva de amiloides polares e hidrófobos.
La figura muestra una representación esquemática de la densidad electrónica deslocalizada (sombreado azul) en las redes de enlaces de hidrógeno que se forman entre las cadenas laterales de Asn (izquierda) y en las formadas entre las cadenas peptídicas principales (derecha).
Miguel Mompeán, Aurora Nogales, Tiberio A. Ezquerra & Douglas V. Laurents ( "Complex System Assembly Underlies a Two-Tiered Model of Highly Delocalized Electrons" J. Phys. Chem. Lett. (2016) 7(10): 1859-1864.
(doi:10.1021/acs.jpclett.6b00699)
- Detalles
- Categoría: Investigación
Una colaboración científica, entre el Instituto de Química-Física "Rocasolano" (CSIC), la Universidad de Buenos Aires (Argentina), la Universidad Nacional de la Plata (Argentina) y la Universidad del País Vasco, ha sido portada de la revista Molecular Physics y publicada como artículo invitado en el volumen especial dedicado al 55 Simposio Sanibel sobre química teórica y computacional. Estos Simposios comenzaron en 1961, por iniciativa del científico sueco Per-Olov Löwdin, quien fue miembro del Comité Nobel. El magnetismo molecular se manifiesta macroscópicamente a través del momento magnético (espín total S) de una molécula. Para ello, es necesario que haya electrones desapareados – (poli)radicales – en el estado fundamental del sistema. En el artículo se predice un sistema de espín máximo Smax = 6 en su estado fundamental, el cual está formado por doce icosaedros NB11H11 de tipo radical (S = ½) conectados entre sí formando un supericosaedro magnético (primera iteración). Esta predicción abre la puerta al diseño de imanes moleculares basados en moléculas de boro (boranos), puesto que el sistema puede extenderse en las tres dimensiones, maximizando así el spin total Smax en la progresión Smax(n) = {1/2, 6, 72, ..., 12n/2}.
Diego R. Alcoba, Ofelia B. Oña, Gustavo E. Massaccesi, Alicia Torre, Luis Lain, Rafael Notario, Josep M. Oliva
"Molecular magnetism in closo-azadodecaborane supericosahedrons", Molecular Physics (2016) 114, 3-4, 400-406.
doi:10.1080/00268976.2015.1076900
- Detalles
- Categoría: Investigación
TDP-43 es una proteína que actúa como editor y repartidor de mensajes, encargándose de modificar la información contenida en el ARN y del transporte del mismo, desde el núcleo al citoplasma. Si durante este reparto TDP-43 encuentra condiciones adversas, actúa como un paraguas (en realidad un hidrogel o amiloide funcional) para proteger los mensajes que transporta. Desafortunadamente, en ocasiones los paraguas se rompen y TDP-43 puede enredarse formando una maraña (agregados amiloides tóxicos), comprometiendo la edición y la correcta distribución del mensaje, probablemente causando la muerte celular. De hecho, los agregados de TDP-43 están vinculados a la esclerosis lateral amiotrófica (ELA), una enfermedad neurodegenerativa que causa la muerte de 4.000 españoles al año. La elucidación de la estructura, dinámica y estabilidad de la primera cuarta parte (o dominio N-terminal) de TDP-43 proporciona las herramientas para una mejor comprensión de la función y disfunción de esta proteína.
Mompeán M, Romano V, Pantoja-Uceda D, Stuani C, Baralle FE, Buratti E and Laurents DV "The TDP-43 N-Terminal Domain Structure at High Resolution." FEBS J. Jan 12th, 2016
doi: 10.1111/febs.13651
- Detalles
- Categoría: Investigación
Se ha diseñado un nuevo método para relacionar propiedades dinámicas y la función de proteínas inmovilizadas en microesferas de agarosa. La movilidad de las proteínas se cuantifica en cualquier localización de la microesfera, a diferentes profundidades (0-100 µm), con resolución espacial de 500-600 nm, a partir de imágenes de anisotropía de fluorescencia de secciones ópticas de las esferas. Se propone una escala general de movilidad de proteínas, que es independiente de la configuración instrumental y de la sonda fluorescente. La movilidad de la macromolécula es muy sensible al tipo de química de inmovilización, así como a la microestructura porosa del hidrogel, condicionada por la química de inmovilización. Los resultados obtenidos pueden ayudar a conseguir catalizadores heterogéneos más estables con interés para el biodiesel y las industrias de alimentos.
Orrego AH, García C, Mancheño JM, Guisán JM, Lillo MP, López-Gallego F
"Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins" J Phys Chem B (2016) 120, 485-491.
DOI: 10.1021/acs.jpcb.5b12385
- Detalles
- Categoría: Investigación
El ozono de la troposfera, especialmente el presente en las zonas tropicales hasta unos 17 km de altura, es un importante gas de efecto invernadero, cuya influencia sobre el calentamiento global en los últimos 300 años es similar a la del metano. Recientemente se ha completado un estudio internacional, con la participación de investigadores del Departamento de Química Atmosférica y Clima del IQFR, que muestra que la concentración de ozono en la troposfera media (8-10 km) sobre el Pacífico Oeste se ha triplicado en relación con la existente en los trópicos. Aunque el aumento se atribuyó anteriormente al transporte de ozono desde la estratosfera, las medidas de satélite y avión, y el análisis de modelos de cambio climático del presente estudio, indican que este aumento de ozono se origina en la combustión de masas forestales de África y el sudeste asiático. Por tanto, la quema de grandes cantidades de biomasa en estas regiones tiene un impacto sobre el clima mucho mayor que el estimado anteriormente.
D. C. Anderson, J. M. Nicely, R. J. Salawitch, T. P. Canty, R. R. Dickerson, T. F. Hanisco, G. M. Wolfe, E. C. Apel, E. Atlas, T. Bannan, S. Bauguitte, N. J. Blake, J. F. Bresch, T. L. Campos, L. J. Carpenter, M. D. Cohen, M. Evans, R. P. Fernandez, B. H. Kahn, D. E. Kinnison, S. R. Hall, N. R. Harris, R. S. Hornbrook, J.-F. Lamarque, M. Le Breton, J. D. Lee, C. Percival, L. Pfister, R. R. Pierce, D. D. Riemer, A. Saiz-Lopez, B. J. Stunder, A. M. Thompson, K. Ullmann, A. Vaughan and A. J. Weinheimer. A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications (2015).