Researcher from the IQFR-CSIC publishes a comprehensive review article on recent advances of the time-resolved serial crystallography technique at synchrotron radiation sources in Crystals journal.

The ultrabright and ultrashort pulses produced at X-ray free electron lasers (XFELs) has enabled studies of crystallized molecular machines at work under ‘native’ conditions at room temperature by the so-called time-resolved serial femtosecond crystallography (TR-SFX) technique. Since early TR-SFX experiments were conducted at XFELs, it has been largely reported in the literature that time-resolved X-ray experiments at synchrotrons are no longer feasible or are impractical due to the severe technical limitations of these radiation sources. The transfer of the serial crystallography approach to newest synchrotrons upgraded for higher flux density and with beamlines using sophisticated focusing optics, submicron beam diameters and fast low-noise photon-counting detectors offers a way to overcome these difficulties opening new and exciting possibilities. In fact, there is an increasing amount of publications reporting new findings in structural dynamics of protein macromolecules by using time resolved crystallography from microcrystals at synchrotron sources. This review gathers information to provide an overview of the recent work and the advances made in this filed in the past years, as well as outlines future perspectives at the next generation of synchrotron sources and the upcoming compact pulsed X-ray sources.