Orrego-et-alA new method for connecting the dynamics and function of proteins immobilized on agarose beads is demonstrated. The mobility of proteins was quantified in any location of agarose beads, at different depths (0-100 microns; 500-600 nm spatial resolution), from fluorescence anisotropy optical sections of the beads. Protein fluorescence anisotropy informs about restriction of the global rotation of the immobilized proteins onto a solid surface. A general protein mobility scale was defined, which is independent of instrumental settings and fluorescent probes. Protein mobility is very sensitive to the chemistry of immobilization, as well as to the hydrogel porous microstructure resulting from the immobilization reactions. In this way better immobilization processes may be designed, leading to more stable heterogeneous biocatalysts with interest for the biodiesel and food industries.

Orrego AH, García C, Mancheño JM, Guisán JM, Lillo MP, López-Gallego F
"Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins" J Phys Chem B (2016) 120, 485-491.
DOI: 10.1021/acs.jpcb.5b12385