MJSanchezDue to their sessile nature, plants have to endure adverse environmental conditions, and in this context, soil salinity is a severe and increasing constraint on the productivity of agricultural crops.
The Arabidopsis thaliana Na+/H+ plasma membrane antiporter SOS1 is essential to maintain low intracellular levels of the toxic Na+ under salt stress, and it is considered a very interesting biotechnological target for crop improvement. Researchers from IQFR, Armando Albert and María José Sánchez-Barrena, in collaboration with groups from IEM and IRNAS (CSIC) have carried out in vivo, biochemical and electron microscopy studies to understand the three- dimensional structure of this critical protein for salt tolerance.

Reference: Structural insights on the plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ antiporter
Núñez-Ramírez R, Sánchez-Barrena MJ, Villalta I, Juan F. Vega, Pardo JM, Quintero FJ,  Martínez-Salazar J, Albert A. 
Journal of Molecular Biology (2012) 424, 283-294  (doi:10.1016/j.jmb.2012.09.015)

The obtained structure suggests that SOS1 may undergo an allosteric regulation by the SOS2-SOS3 complex. This result, together with other structural studies on the different components of the Salt Overly Sensitive pathway, carried out at the Department of Crystallography and Structural Biology of the IQFR (Sánchez-Barrena et al. 2005, 2007), let us to understand how the molecular machinery for salt tolerance works and opens new paths towards biotechnological applications.