News
Vinaora Nivo Slider 3.x

In its 88-year story, the mission of our institute has been to carry out excellence research in fundamental and applied physical chemistry, contributing to the scientific training of several generations of researchers at the highest level. Our vision is to be an international reference in multidisciplinary research focused on the resolution of the present challenges of our society in the fields of health, biotechnology, new materials, and environment.

Intranet

Today

No events

Upcoming events

No events
March 2024
M T W T F S S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

On November 29th we will have a seminar given by Nazario Martín about the development of cost-effective hole transporting materials with high efficiency along with a good stability for Perovskite Solar Cells.

 Fecha y lugar del mismo: 29th November 2017. IQFR's assembly hall.

Abstract: Methylammonium (MA) lead halide MAPbX3 perovskites are currently among the most active materials for photovoltaic applications. Actually, the PCE of perovskite-based solar cells (PSCs) has dramatically increased from the initial 3.8% to a recently certified 22.1%. Emerging from this groundbreaking discovery, an unprecedented scientific research has sprouted in the field of photovoltaics due to their exceptional physical properties. Therefore, the development of cost-effective HTMs with high efficiency along with a good stability is an important task to address. Planar and sulfur-rich polycyclic aromatic hydrocarbons bearing arylamine moieties have demonstrated to be a successful approach for designing new highly efficient HTMs for PSCs. Conventionally, the π-extended conjugation associated with the planar and electron-rich structure of the fused heterocycles enable them to show strong stacking through intermolecular interactions (π‒π, S···S), thereby bestowing enhanced hole-carrier mobilities. This behaviour is beatifully exemplified by sulfur-rich HTMs recently reported. The performance of the solar cells employing the novel HTMs were measured under simulated 1 sun irradiation and conversion efficiencies up to 19 % were observed.Simultaneously, we have also been engaged in electron transporting materials (ETMs) based on fullerenes, which has allowed to remove the TiO2 from the PSC and obtaining efficiency values around 14%.