Noticias
Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

En sus 85 años de historia, la misión de nuestro instituto ha sido realizar una  investigación de excelencia en fisicoquímica fundamental y aplicada, contribuyendo a la formación de varias generaciones de  científicos del máximo nivel. La visión de nuestro instituto es ser una referencia internacional en investigación multidisciplinar enfocada a resolver los retos actuales de nuestra sociedad en ámbitos de salud, biotecnología, nuevos materiales y medioambiente.

Hoy

Sin eventos
Diciembre 2017
L M X J V S D
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

magnetiteLa magnetita es el mineral que documenta el campo magnético de la Tierra en el pasado. Por lo tanto su magnetismo, y especialmente sus cambios con la temperatura, han sido muy estudiados en geofísica y ciencia de la materia condensada. La magnetita presenta varias transiciones de fase, algunas puramente magnéticas como la transición de reorientación de spin (típicamente a 130-140K), donde la imanación cambia de dirección. Otras modifican su magnetismo, como la transición de Verwey, una transición metal-aislante debida al cambio de la estructura cristalina, de cúbica a monoclínica. Hemos empleado recientemente nuevas técnicas de microscopía para observar los cambios de los dominios magnéticos provocados por estas transiciones: una es la microscopía de electrones de baja energía y polarizados en spin (SPLEEM), con tan sólo cuatro instrumentos en el mundo, en colaboración con Andreas K. Schmid y otros investigadores del Berkeley National Laboratory, y otra es la microscopía de fotoemisión de electrones resueltos en spin (spin-PEEM), de la cual existe un único instrumento, en el Max Planck Institute for Microestructure Physics (Halle), en colaboración con Christian Tusche. La parte superior izquierda de la figura muestra la imagen SPLEEM de los dominios magnéticos por debajo de la temperatura de Verwey, donde los colores indican la dirección según el esquema mostrado más abajo (1); la parte derecha muestra la imagen de spin-PEEM (2) de la magnetización por encima (arriba) y por debajo (abajo) de la temperatura de Verwey. Estas técnicas han permitido obtener imágenes muy detalladas de los dominios magnéticos antes y después de ambas transiciones, con resolución espacial de nm.

(1) Laura Martín-García, Arantzazu Mascaraque, Beatriz M. Pabón, Roland Bliem, Gareth S. Parkinson, Gong Chen (陈宫), Andreas K. Schmid, and Juan de la Figuera, "Spin reorientation transition on magnetite (001)", Phys. Rev. B 93 (2016) 134419, DOI:10.1103/PhysRevB.93.134419

(2) J. de la Figuera and C. Tusche, "The Verwey transition observed by spin-resolved photoemission electron microscopy", App. Surf. Sci. (2016), DOI:10.1016/j.apsusc.2016.05.140

 

web page figure

La esclerosis lateral amiotrófica (ELA) es una enfermedad neuromuscular mortal que afecta a 2.800 personas en España, con dos nuevos casos diagnosticados cada día. Se han encontrado agregados anormales de la proteína "TDP-43" (proteína de respuesta transactiva de unión a ADN, de 43 kDa) en más del 95% de las neuronas motoras dañadas de estos enfermos. Dicha proteína está también relacionada con otras enfermedades neurodegenerativas, incluyendo el Alzheimer y la degeneración lobular frontotemporal. La agregación de TDP-43 se atribuye a una pequeña región de la proteína rica en los aminoácidos asparragina y glutamina que se extiende desde los residuos 341 a 357. Sin embargo, se desconocía la conformación de este segmento y el mecanismo de formación de los agregados patológicos. Sobre la base de múltiples ensayos bioquímicos y biofísicos, investigadores del IQFR, en colaboración con científicos de la Universidad de Columbia (Nueva York), el Instituto Cajal (CSIC), IMDEA Nanociencia (CAM) y el Centro Internacional de Ingeniería Genética y Biotecnología (Trieste, IT) han revelado que los motivos de horquilla beta de este segmento se ensamblan en una estructura de tipo amiloide con una morfología atípica de fibrillas. Asimismo, a partir de métodos computacionales, se propone un modelo estructural para el agregado cuasi-amiloide en el cual las horquillas beta de TDP-43 (341-357) se asocian con una novedosa topología paralela. Es probable que este modelo estructural avance nuestra comprensión del papel de la TDP-43 en las enfermedades neurodegenerativas y quizá ayude en la búsqueda de tratamientos.

M. Mompeán, R. Hervás, Y. Xu, T.H. Tran, C. Guarnaccia, E. Buratti, F. Baralle, L. Tong, M. Carrión-Vázquez, A.E. McDermott, D.V. Laurents
J. Phys. Chem. Letters, June 2015, doi: 10.1021/acs.jpclett.5b00918

 

Fig2IQFRweb 24June2015

La proteína autolisina LytA está involucrada en la virulencia de neumococo, un microorganismo patógeno causante de diversas infecciones en humanos. El dominio C-terminal de esta proteína (CLytA) consta de seis repeticiones de unión a colina (CBR) organizadas en la estructura de β-solenoide característica de los módulos de unión a colina. En el grupo de RMN del Instituto de Química-Física ‘Rocasolano’ (CSIC) se ha procedido a la caracterización estructural de un péptido de 14 aminoácidos cuya secuencia corresponde a la horquilla β de la tercera repetición CBR de CLytA. Se ha encontrado que este péptido en disolución acuosa forma una horquilla β similar a la nativa y muy estable, que une colina con baja afinidad, mientras que en presencia de micelas de detergentes (con una superficie hidrófila y un núcleo hidrófobo) forma una hélice α anfipática (es decir, con dos caras, una hidrofóbica y la otra polar) muy estable. Hasta la fecha este comportamiento estructural “camaleónico” es el único caso descrito de un péptido cuya estructura cambia de forma drástica en presencia de micelas de detergente, y evidencia la importancia de las interacciones hifrofóbicas e hidrofílicas. Estos resultados son relevantes en el campo del diseño de péptidos y biosensores, y además pueden ser de ayuda para entender las bases moleculares del peculiar mecanismo de translocación de LytA del citoplasma a la superficie bacteriana.


Referencia:
Hector Zamora-Carreras, Beatriz Maestro, Erik Strandberg, Anne S. Ulrich, Jesús M. Sanz, y M. Angeles Jiménez. “Micelle-triggered β-hairpin to α-helix transition in a 14-residue peptide derived from the pneumococcal choline-binding protein LytA”. Chemistry-Eur J. 21, 8076-8089 (2015). doi:10.1002/chem.201500447
Enlace a artículos destacados en mayo 2015 por la SBE (http://biofisica.info/zamora-carreras-jimenez-chemistry-21-8076/)

 

"A Strategy to Accelerate Diabetic Wound Healing"
Mayland Chang
Department of Chemistry and Biochemistry
University of Notre Dame, Indiana, USA

Martes, 30 de Junio de 2015
Hora: 12:00 Salón de Actos

Contacto: Juan A. Hermoso

Julia-Sanz-figura2

La pared celular vegetal es una estructura muy resistente y extraordinariamente compleja de polisacáridos entrecruzados. Dentro del estudio de la complicada maquinaria molecular que realiza su degradación, uno de los mayores retos es entender el mecanismo que rige en enzimas que contienen múltiples copias de dominios suplementarios. La mayor parte de estos dominios no catalíticos son Módulos de Unión a Carbohidratos (CBMs). Su disposición repetida en patrones homogéneos se ha relacionado con multivalencia, mientras que una configuración multimodular heterogénea se cree que confiere distintas especificidades de unión a sustratos. Sin embargo, los trabajos más recientes sugieren que esta definición es demasiado simple. Investigadores del IQFR han realizado estudios estructurales y funcionales de una xilanasa representativa de una serie de enzimas con una peculiar composición de dominios, que contiene un dominio N-terminal con dos CBM22 en tándem y un dominio C-terminal con dos CBM9s. Hemos encontrado nuevas características que permiten atribuir una funcionalidad diferente a cada CBM22, sugiriendo una sofisticada estrategia de unión al sustrato mediada por el tándem de CBM22 homólogos. Nuestro trabajo contribuirá a aumentar el conocimiento de los mecanismos moleculares asociados a la multimodularidad, lo que es esencial para entender y optimizar el proceso de reciclado de la biomasa, produciendo biocatalizadores más eficientes.
The Journal of Biological Chemistry (2015)
First published in May 22

(doi:10.1074/jbc.M115.659300)

 

CoverJBC Def small2

Las glicoproteínas gp120 y gp41 forman parte de la envolvente del virus VIH, causante del SIDA, e intervienen en etapas esenciales de la infección por este virus, concretamente en la fusión de las membranas del virus y de la célula huésped, y en parte de la respuesta del sistema inmunitario frente a la infección. El conocimiento de la estructura de estas moléculas es fundamental para comprender ambos mecanismos.
Investigadores del grupo de RMN del Instituto de Química-Física ‘Rocasolano’ (CSIC), en colaboración con los grupos del Dr. J. L. Nieva (Universidad del País Vasco) y del Dr. J.M.M. Caaveiro (Universidad de Tokio) han determinado las estructuras de varios péptidos de los subdominios MPER (región externa próxima a la membrana) y TM (región transmembrana) de la proteína gp41. Con ello se pone en evidencia que la estructura de la región transmembrana, desconocida hasta la actualidad, consta de dos hélices separadas por un segmento flexible. Al mismo tiempo, se demuestra que la región final de MPER y la inicial de TM forman una única hélice, contrariamente a las predicciones bioinformáticas. Estos datos estructurales permiten proponer un modelo a nivel molecular para el mecanismo de fusión de las membranas del virus y de la célula huésped. Asimismo, y lo que es más importante, explican la capacidad de unión a anticuerpos de la cubierta viral y la respuesta inmune frente a péptidos derivados de MPER. Esta información podría constituir una base firme para el desarrollo de futuras vacunas e inhibidores, y por tanto de nuevas alternativas terapéuticas frente al SIDA.
Las imágenes del virión y de la glicoproteína envolvente han sido amablemente cedidas por el Dr. S. Subramaniam.
El trabajo ha sido seleccionado como “Paper of the Week” por los editores de J. Biol. Chem.
Referencia:
B. Apellaniz, E. Rojas, S. Serrano, K. Morante, K. Tsumoto, J.M.M. Caaveiro, M.A. Jiménez, y J.L. Nieva. “The atomic structure of the HIV-1 gp41 MPER-TMD region reveals a continuously helical inter-domain connection flanked by two metastable hinge segments. Implications for MPER immunogenicity”. J. Biol. Chem. (2015). doi:10.1074/jbc.M115.644351.
Enlace a noticias del CSIC

 

"Explorando Patrones de Glicosilación de Bacterias Patógenas y Vesículas Extracelulares como Marcadores para Receptores Endógenos"

Miércoles 11 de junio

Salón de actos, 12:00

Estructura de vacantes de oxígeno en el óxido de cerio reducible y función catalíticauna perspectiva teórica del papel de la localización del exceso de carga



Viernes 6 de junio

Aula 300, 10:30

Las galectinas: tan parecidas, tan diferentes

Jueves 27 de Junio 2013

12:00 Salón de Actos

"Actividades de investigación en el Grupo de Química Atmosférica y Clima"

Jueves 20 de Junio de 2013

12:00 Salón de Actos de IQFR

"Estudios mediante RMN de la estructura y estabilidad de ácidos nucleicos con furanosas modificadas"

Martes 18 de junio de 2013

12:00 Salón de Actos del IQRF

"From Bayes (to electrons to proteins) to therapies"

Miércoles 19 de Junio de 2013

12:00 Salón de Actos

Water: A Fluid Complex
16:00 Aula 300

Miércoles 12 Junio 2013

figura webUn grupo del IQFR ha determinado el mecanismo de inhibición de Uracil DNA Glicosilasa (UDG), una enzima esencial para la reparación del DNA dañado en las células. Este trabajo ha sido realizado en colaboración con un grupo del CBMSO (CSIC-UAM).


UDG es la primera enzima que actúa dentro de una vía de reparación del DNA denominada BER, detectando la presencia de uracilos. Una vez detectados, los uracilos son eliminados por UDG permitiendo a otras enzimas continuar la cadena de reparación. Se han identificado un grupo de proteínas inhibidoras de UDG, como es el caso de p56 producida por determinados fagos como posible mecanismo de defensa.


El trabajo realizado muestra que p56 mimetiza el DNA bloqueando el centro activo de UDG. Además, la estructura del complejo ha revelado el patrón de reconocimiento específico entre UDG y p56 que explica la falta de reactividad cruzada entre p56 y otras proteínas que unen DNA. Por tanto, nuestros resultados nos permiten entender las bases  moleculares del bloqueo de UDG como mecanismo utilizado por algunos virus para su proliferación. Además, son un paso adelante en el posible uso de p56 como agente antiviral contra determinadas infecciones producidas por herpes y poxvirus.

Publicación:
José Ignacio Baños-Sanz, Laura Mojardín, Julia Sanz-Aparicio, José M. Lázaro, Laurentino Villar, Gemma Serrano-Heras, Beatriz González*, and Margarita Salas*.
Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage ϕ29 DNA mimic protein p56
Nucl. Acids Res. 2013 doi:10.1093/nar/gkt395