News
Vinaora Nivo Slider 3.x

In its 88-year story, the mission of our institute has been to carry out excellence research in fundamental and applied physical chemistry, contributing to the scientific training of several generations of researchers at the highest level. Our vision is to be an international reference in multidisciplinary research focused on the resolution of the present challenges of our society in the fields of health, biotechnology, new materials, and environment.

Intranet

Today

No events

Upcoming events

No events
March 2024
M T W T F S S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

amprA complex link exists between cell-wall recycling/repair and the manifestation of resistance to β-lactam antibiotics in many Enterobacteriaceae and Pseudomonas aeruginosa. This process is mediated by specific cell-wall-derived muropeptide products. These muropeptides are internalized into the cytoplasm and bind to the transcriptional regulator AmpR, which controls the cytoplasmic events that lead to expression of β-lactamase, an antibiotic-resistance determinant. By a combination of X-ray crystallography, mass spectrometry and molecular dynamics techniques we have characterized the effector-binding domain (EBD) of AmpR. Our results provide insights on the muropeptides triggering antibiotics resistance and revises the dogma in the field.
This is part of a collaborative effort between the IQFR and the Univ. of Notre Dame (Indiana, USA).

Dik, D.A.; Domínguez-Gil, T.; Lee, M.; Hesek, D.; Byun, B.; Fishovitz, J.; Boggess, B.; Hellman, L.M.; Fisher, J. F.; Hermoso, J.A.; Mobashery, S. “Muropeptide Binding and the X-Ray Structure of the Effector Domain of the Transcriptional Regulator AmpR of Pseudomonas aeruginosa”. J. Am. Chem. Soc. (2017).
doi:10.1021/jacs.6b12819