Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

In its 85-year story, the mission of our institute has been to carry out excellence research in fundamental and applied physical chemistry, contributing to the scientific training of several generations of researchers at the highest level. Our vision is to be an international reference in multidisciplinary research focused on the resolution of the present challenges of our society in the fields of health, biotechnology, new materials, and environment.


No events
December 2017
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31


In the radio program released on 10.10.2016, current aspects of computational chemistry, from quantum chemistry to modeling of biochemical systems have been discussed. Scientific issues in the chemistry of boron have also been mentioned, from new materials to biological aspects, related to this particular element. Recent activities of the "Julio Palacios" Chair, as well as the work carried out by the IQFR library on the updating of the Chair website with scientific, academic, and bibliographic documentation of Julio Palacios, were also described..



"Molecular Scissors for Gene Therapy"

Rafael Molina Monterrubio

Viernes 6 de noviembre

Salón de actos, 12:00

"Estudio termoquímico de derivados de imidazol"
Gastón Perdomo León
Facultad de Ciencias Químicas
Benemérita Universidad Autónoma de Puebla
Puebla, México

Miércoles, 28 de Octubre de 2015
Hora: 12:00 Salón de Actos














Light is crucial for many essential biological processes such as photosynthesis, vision, circadian rhythms, etc., but can also cause photooxidative cellular damage. Living organisms sense and respond to light using photoreceptors, proteins associated with a light-sensing chromophoric cofactor such as retinal in the photoreceptors of the eye. In 2011, the research teams of Dr. S. Padmanabhan (NMR group, IQFR) and Prof. Montserrat Elías-Arnanz (Universidad of Murcia/Associated Unit to IQFR) discovered a novel photoreceptor family that uses vitamin B12 as the light-sensing molecule and revealed its mode of action in light-dependent gene regulation. These two teams, in collaboration with that of Prof. Catherine L. Drennan (Massachusetts Institute of Technology, USA), now report the crystal structures of the B12-dependent photoreceptor in all three relevant states: in the dark (both free and bound to DNA), and after light exposure; that is, three high-resolution snapshots that reveal the light-dependent conformational changes behind its mechanism of action. These findings expand the biological role assigned to vitamin B12, and enable a framework for the development of a new class of optogenetic tools for controlled gene expression.

Marco Jost, Jésus Fernández-Zapata, María Carmen Polanco, Juan Manuel Ortiz-Guerrero, Percival Yang-Ting Chen, Gyunghoon Kang, S. Padmanabhan, Montserrat Elías-Arnanz, and Catherine L. Drennan. “Structural basis for gene regulation by a B12-dependent photoreceptor” Nature 526, 536–541 (22 October 2015) DOI: 10.1038/nature14950 (Published online September 28, 2015).



Vitamin B12 is an essential enzyme cofactor in humans and other animals. Lack of B12 causes pernicious anemia, neural dysfunction and other disorders. A new molecular function for this vitamin was discovered a few years ago (PNAS, Vol. 108, p 7565-7570, 2011) in a collaboration between Dr. S. Padmanabhan of the NMR group (IQFR) and the Molecular Genetics group of Prof. Montserrat Elías-Arnanz (Universidad of Murcia and Associated Unit to IQFR). It was shown that B12 displays a new role as a light-sensing molecule and that it is involved in light-dependent gene regulation. Now, these researchers in collaboration with others at the University of Manchester (UK), have published a detailed photochemical mechanism for this new class of photoreceptors. The work provides a mechanistic foundation for the emerging field of B12 photobiology and a basis for the development of this class of photoreceptors as optogenetic tools for controlled gene expression in cells and organisms.

Roger J. Kutta, Roger J. Kutta, Samantha J. O. Hardman, Linus O. Johannissen, Bruno Bellina, Hanan L. Messiha, Juan Manuel Ortiz-Guerrero, Montserrat Elías-Arnanz, S. Padmanabhan, Perdita Barran, Nigel S. Scrutton, Alex R. Jones. The photochemical mechanism of a B12-dependent photoreceptor protein. Nature Communications, 6,
Article number 7907, August 12, 2015. doi: 10.1038/ncomms8907.


RMN-como-herramientaWe all know someone who has undergone a Nuclear Magnetic Resonance (NMR) scan. But only very few know that NMR is a powerful tool for the determination of the three-dimensional structure of molecules. This has been explained by Dr. Marta Bruix, from the Protein Structure, Dynamics and Interactions by NMR Group, on April 20th in the RTVE program “On Giant's Shoulders” (



book Boron Fifth Element-def

A collaboration between the Institute of Physical-Chemistry “Rocasolano” (CSIC) and the Institute of Molecular Sciences from the University of Valencia has led to a chapter in the book “Boron: The fifth element” (Springer Verlag), within the series “Challenges and Advances in Computational Chemistry and Physics”. Since the disclosure of borane compounds - polyhedral BxHy structures - as rocket fuel in the 1950’s, the research in this field, particularly on the synthesis of boranes and their derivatives, has grown exponentially. This multi-author book reviews the recent developments in boron chemistry, with a particular emphasis on the contribution of computational chemistry.
Josep M. Oliva, Antonio Francés-Monerris, and Daniel Roca-Sanjuán, “Quantum Chemistry of Excited States in Polyhedral Boranes”. Capítulo 4 en “Boron: The Fifth Element”, volumen 20 de la serie “Challenges and Advances in Computational Chemistry and Physics”, Editorial Springer (2016) ISBN 978-3-319-22282-0.


El proyecto PEGASO (Plankton-derived Emissions of trace Gases and Aerosols in the Southern Ocean) nace con el objetivo general de investigar cómo el océano participa en los procesos atmosféricos y, por lo tanto, interacciona con el sistema climático global. Pretende evaluar la importancia relativa de estos fenómenos en un escenario de cambio climático global. El proyecto PEGASO aprovechará el tránsito desde Cartagena hasta Punta Arenas, previo a la campaña en la Antártida, a bordo del Buque de Investigación Oceanográfica (BIO) Hespérides.

El Grupo de Química Atmosférica y Clima (AC2), liderado por Alfonso Saiz-López, es uno de los dos grupos españoles (junto al ICM-CSIC) que participa en esta expedición, aportando un dispositivo MAX-DOAS (multi-axis differential optical absorption spectroscopy) desarrollado en el IQFR y un monitor de ozono, con los que se pretende recoger una extensa base de datos de alta resolución que nos permitirá inferir la distribución espacio-temporal de gases traza, emitidos desde los océanos y que son climáticamente activos, como IO, BrO, HCHO y (CHO)2 a lo largo de las distintas etapas de la expedición. Con ello, podremos mejorar nuestro conocimiento sobre la interacción océano-atmósfera, así como su relación con el clima.

Telescopio situado a babor de la cubierta superior del BIO-Hespérides


AMALCP2Alejando Manjavacas Arévalo

Tesis: "Light-Matter Interaction at the Nanoscale"
Director: Prof. Javier García de Abajo
Grupo: Nanophotonics Theory Group
Posición actual: J. Evans Attwell-Welch Postdoctoral Fellow en el grupo "Norlander Nanophotonics Group" de la Rice University

Luis Cerdán Pedraza

Tesis: "Solid State Dye Lasers: Scattering feedback and integrated devices"
Directores: Prof. Ángel Costela y Prof. Inmaculada García-Moreno
Grupo: Grupo de Materiales Láser e Interacciones Láser-Materiales
Posición actual: Ayudante Postdoctoral en el mismo grupo.



Bases estructurales de la homeostasis del potasio en plantas: Regulación del transportador AKT1 y de la quinasa CIPK23

Viernes 24 octubre a las 12:00

Salón de Actos


In collaboration with a group led by the CNIO and the CRG, the IQFR has participated in a study to understand the interactions that regulate the dynamic properties of microtubules and their organization during mitosis. The work has focused on the characterization of the molecular interaction between TACC3 and chTOG. These proteins are key in forming the internal cellular framework that enables and sustains cell division. The work was carried out by a multiexperimental approximation using a variety of biophysical (SAXS, NMR, CD), biochemical and cellular techniques. It has been possible to define the minimum active domain of TACC3 and derive a 3D model by SAXS. By NMR we have identified key residues for molecular interaction. From these data, designed mutants have allowed us to see, in cells, how preventing this association the mitotic spindle assembly is not produced.

The results may help to optimise current oncological therapies specifically designed to fight against this framework, named by the scientific community as microtubules

This study was funded by the CONSOLIDER programme of the Ministry of Economy and Competitiveness, the Ramón Areces Foundation, and the Community of Madrid.

XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation.

Mortuza GBCavazza TGarcia-Mayoral MFHermida DPeset IPedrero JGMerino NBlanco FJLyngsø JBruix MPedersen JSVernos IMontoya GNat Commun. 2014 Sep 29;5:5072. doi: 10.1038/ncomms6072.


FIgura web smallerThe transport of ions through the plant cell membrane establishes the key physicochemical parameters for cell function. Stress situations such as those created by soil salinity or low potassium conditions alter the ion transport across the membrane producing dramatic changes in the cell turgor, the membrane potential, and the intracellular pH and concentrations of toxic cations such as sodium and lithium. As a consequence, fundamental metabolic routes are inhibited.


The CIPK family of twenty-six protein kinases regulates the function of several ion transporters at the cell membrane to restore ion homeostasis under stress situations. Our analyses provide an explanation on how the CIPKs are differentially activated to coordinate the adequate cell response to a particular stress.


Proceedings of the National Academy of Sciences, PNAS (2014), (doi:10.1073/pnas.1407610111)


MBB Premio2014

La Profesora Marta Bruix, ha recibido el Premio Bruker del GERMN (Grupo Especializado de RMN de la RSEQ) durante la Reunión Bienal que ha tenido lugar recientemente en Alcalá de Henares, en reconocimiento a su trayectoria científica y en particular a sus trabajos en la RMN de proteínas.


Este galardón, patrocinado por Bruker Española S.A., fue instituido por el GERMN para premiar a investigadores españoles que hayan tenido una contribución significativa en el campo de la espectroscopía de RMN y una labor de diseminación de la técnica a la comunidad científica española.


Los investigadores galardonados en ediciones anteriores son:


▪ Dr. Manuel Rico, Instituto de Química Física “Rocasolano” – CSIC, en ocasión de su 65 aniversario y en conmemoración de los 40 años de la espectroscopía de RMN en España (Madrid, 2002).
▪ Dr. Ernest Giralt, Institut de Recerca Biomèdica and Universitat de Barcelona, en la I Reunión Bienal del GERMN (Calella de Mar, 2002)
▪ Dr. Jorge Santoro, Instituto de Química Física “Rocasolano” – CSIC, en la II Reunión Bienal GERMN (Santiago de Compostela, 2004)
▪ Dr. Francesc Sánchez Ferrando, Universitat Autònoma de Barcelona, en la III Reunión Bienal GERMN (Alicante, 2006)
▪ Dr. Jesús Jiménez Barbero, Centro de Investigaciones Biológicas – CSIC, en la IV Reunión Bienal GERMN (Sevilla, 2008)
▪ Dr. Miquel Pons, Institut de Recerca Biomèdica and Universitat de Barcelona, en la V Reunión Bienal GERMN (Bilbao, 2010)
▪ Dr. Teodor Parella, Universitat Autònoma de Barcelona, en la VI Reunión Bienal GERMN (Aveiro, 2012)



El próximo lunes 6 de octubre tenemos a Ivan Plaza-Menacho que impartirá un seminario en la sala 300 a las 12:00:
Molecular mechanisms of RET tyrosine kinase cis-regulation and oncogenic deregulation in trans: implications for targeted therapy
Ivan Plaza-Menacho, Structural Biology Laboratory, London Research Institute, Cancer Research UK


The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The highmolecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactamacylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain—a remarkable 60 Å distant from the DD-transpeptidase active site—discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell Wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.


Lisandro H. Oteroa, Alzoray Rojas-Altuvea, Leticia I. Llarrull, Cesar Carrasco-López, Malika Kumarasiri, Elena Lastochkin, Jennifer Fishovitz, Matthew Dawley, Dusan Hesek, Mijoon Lee, Jarrod W. Johnson, Jed F. Fisher, Mayland Chang, Shahriar Mobashery, Juan A. Hermoso. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. PNAS. DOI: 10.1073/pnas.1300118110



Modified nucleic acids are very interesting molecules because of their application in Biomedicine, as therapeutic agents, and in Nanoscience, as potential components of nano-devices. Of particular relevance is the substitution of a hydrogen atom at the 2’ position of the DNA deoxyribose by fluorine. Fluorine is the most electronegative element and alters the electronic distribution in its surroundings, provoking interactions that are not present, or are much weaker, in natural nucleic acids.

In two recent papers researchers of the IQFR, in collaboration with colleagues of McGill University in Canada and in the IRB in Barcelona, have described these effects at structural level and analysed their physico-chemical basis in double helical and guanine quadruplex structures.



N. Martín-Pintado, M. Yahyaee-Anzahaee, G. F. Deleavey, G. Portella, M. Orozco, M.J. Damha, and C. González.Dramatic effect of furanose C2´-substitution on structure and stability:  Directing the folding of the human telomeric quadruplex with a single fluorine atom.J. Am. Chem. Soc., 135, 5344-5347, 2013.doi: 10.1021/ja401954t

N. Martín-Pintado, G. F. Deleavey, G. Portella, R. Campos-Olivas, M. Orozco, M.J. Damha, and C. González.Backbone FC-H...O hydrogen bonds in 2´F-substituted nucleic acids.Angewandte Chemie Int Ed, en prensa, 2013.doi:10.1002/anie.201305710